In the polymorphic ciliate Tetrahymena vorax, the non-selective phagocytosis seen in microstomes changes to a highly selective process in macrostomes.
نویسندگان
چکیده
Ciliates use phagocytosis to acquire edible particles. The polymorphic ciliate Tetrahymena vorax appears in two forms ('microstomes' and 'macrostomes'). Transformation of microstomes into macrostomes takes place in the presence of the ciliate Tetrahymena thermophila and enables the macrostome to phagocytose the latter species. The non-specific, constitutive phagocytosis in microstomes thereby changes into a specific inducible process in macrostomes. The purpose of this study was to determine whether the phagocytotic process in macrostomes is specifically aimed at catching T. thermophila. The two forms of phagocytosis represent an interesting model system for studying the mechanism whereby phagosomes are formed. The macrostomal form capture deciliated and ciliated Tetrahymena thermophila, latex beads with diameters of 20.3 and 30.0 microm and small microstomal cells. However, the macrostomes select T. thermophila as a prey when they have the opportunity to choose between deciliated T. thermophila and latex beads and between T. thermophila and microstomes. The non-selective formation of phagosomes seen in microstomes changes to a highly selective process during the transformation to macrostomes. Unlike microstomes, macrostomes do not form a closed vacuole after capturing a latex bead, indicating that mechanical stimulation by the prey does not in itself trigger phagocytosis in the macrostomal form of T. vorax. Although macrostomes captured T. thermophila in preference to microstomes, phagocytosis of microstomes started immediately following capture, indicating that the substance/molecule that triggers the formation of the phagosome is not specific for T. thermophila cells. After capturing a T. thermophila cell, the macrostomal cell, which normally swims in a forward direction, reverses direction and swims backwards for a short time before starting to rotate. Macrostomal cells did not change their swimming pattern after capturing a latex bead. We believe, therefore, that backward swimming is more likely to be related to signals resulting from phagocytosis than from mechanical stimulation of the pouch. Cytochalasin B (10 microg ml(-1)) inhibits phagocytosis in both microstomes and macrostomes, indicating that actin filaments play an active role in phagocytosis in both cell types. The antitubulin drug nocodazole (0.3-30 micromol l(-1)) inhibits the formation of more than one phagosome in the macrostome, indicating that membrane transport to the oral apparatus in macrostomes is guided by microtubules. Nocodazole has no effect on the process of phagocytosis in microstomes.
منابع مشابه
Microstome--macrostome transformation in the polymorphic ciliate Tetrahymena vorax leads to mechanosensitivity associated with prey-capture behaviour.
Ciliates feed by phagocytosis. Some ciliate species, such as Tetrahymena vorax, are polymorphic, a strategy that provides more flexible food utilization. Cells of the microstomal morph of T. vorax feed on bacteria, organic particles and organic solutes in a non-selective manner, whereas macrostome cells are predators that consume specific prey ciliates. In the present study, we investigated a p...
متن کاملChemo-accumulation without changes in membrane potential in the microstome form of the ciliate Tetrahymena vorax.
The swimming behaviour of ciliates is mainly determined by membrane potential and transmembrane fluxes. In a chemical gradient, swimming ciliates may approach or move away from the source. Based on experiments on Paramecium, it is generally assumed that chemical attractants and repellents affect the swimming behaviour of ciliates by specific changes in the membrane potential. We have examined w...
متن کاملSurvival of Legionella pneumophila in the cold-water ciliate Tetrahymena vorax.
The processing of phagosomes containing Legionella pneumophila and Escherichia coli were compared in Tetrahymena vorax, a hymenostome ciliated protozoan that prefers lower temperatures. L. pneumophila did not multiply in the ciliate when incubated at 20 to 22 degrees C, but vacuoles containing L. pneumophila were retained in the cells for a substantially longer time than vacuoles with E. coli. ...
متن کاملFunctional Ecology of the Ciliate Glaucomides bromelicola, and Comparison with the Sympatric Species Bromeliothrix metopoides
We investigated the ecology and life strategy of Glaucomides bromelicola (family Bromeliophryidae), a very common ciliate in the reservoirs (tanks) of bromeliads, assessing its response to food quality and quantity and pH. Further, we conducted competition experiments with the frequently coexisting species Bromeliothrix metopoides (family Colpodidae). In contrast to B. metopoides and many other...
متن کاملThe hormonal system of the unicellular Tetrahymena: a review with evolutionary aspects.
The unicellular ciliate, Tetrahymena has receptors for hormones of the higher ranked animals, these hormones (e.g. insulin, triiodothyronine, ACTH, histamine, etc.) are also produced by it and it has signal pathways and second messengers for signal transmission. These components are chemically and functionally very similar to that of mammalian ones. The exogenously given hormones regulate diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 205 Pt 14 شماره
صفحات -
تاریخ انتشار 2002